

 Navigation

 	
 index

 	latest 0.2.6 documentation

Gnotty

Created by Stephen McDonald [http://twitter.com/stephen_mcd]

Gnotty ties the knot between the web and IRC. It is designed to assist
open source projects that host an IRC channel for collaboration on
their project.
Gnotty is BSD licensed [http://www.linfo.org/bsdlicense.html].

Gnotty is comprised of several parts. Primarily Gnotty provides a
modern web client and server for communicating with an IRC channel via
a web browser. The web server uses gevent [http://www.gevent.org]
and WebSockets [http://en.wikipedia.org/wiki/WebSockets], which
provides the communication layer between the IRC channel and the web
browser. Twitter’s Bootstrap [http://twitter.github.com/bootstrap/]
is used to style the web interface, providing a fully responsive
layout, suitable for use with mobile devices. Customisable templates
are also provided for skinning the web interface.

Check out the Gnotty live demo [http://gnotty.jupo.org] to see the
web interface in action.

Secondly, Gnotty provides the ability to run a highly customisable
IRC bot. Different classes of bots can be configured on startup, and
bots can perform different services such as message logging and
interacting with users in the IRC channel. Bots also contain webhooks,
which allows bots to receive and act on input over HTTP from external
services.

Gnotty also provides an optional Django application that archives IRC
messages, for browsing and searching via a web interface. By default
the IRC bot uses Python’s logging module to provide configurable
logging handlers for IRC messages. When the Django application is
used, a logging handler is added that logs all IRC messages to the
Django project’s database. The Django application then provides all
the necessary views and templates for messages to be searched by
keyword, or browsed by date using a calendar interface.

Note that the Django application is entirely optional. Gnotty can
be run without using Django at all, as a stand-alone gevent web
server that provides the web interface to an IRC channel, with
configurable IRC bots.

Installation

The easiest way to install Gnotty is directly from PyPi using
pip [http://www.pip-installer.org] by running the command below:

$ pip install -U gnotty

Otherwise you can obtain Gnotty from the
GitHub [https://github.com/stephenmcd/gnotty] or
Bitbucket [https://bitbucket.org/stephenmcd/gnotty] repositories,
and install it directly from source:

$ python setup.py install

Configuration

Gnotty is configured via a handful of settings. When integrated
with Django, these settings can be defined in your Django project’s
settings.py module. When Gnotty is run as a stand-alone
client, these same settings can be defined via the command-line, or
in a separate Python configuration module. See the “Stand-Alone Web
Client” section below for details.

	GNOTTY_HTTP_HOST - HTTP host address to serve from.
string, default: 127.0.0.1

	GNOTTY_HTTP_PORT - HTTP port to serve from.
integer, default: 8080

	GNOTTY_IRC_HOST - IRC host address to connect to.
string, default: irc.freenode.net

	GNOTTY_IRC_PORT - IRC port to connect to.
integer, default: 6667

	GNOTTY_IRC_CHANNEL - IRC channel to join.
string, default: #gnotty

	GNOTTY_IRC_CHANNEL_KEY - Optional key required to access
the IRC channel.
string, default: None

	GNOTTY_BOT_CLASS - Dotted Python path to the IRC client bot
class to run.
string, default: gnotty.bots.BaseBot

	GNOTTY_BOT_NICKNAME - IRC nickname the logging client will
use.
string, default: gnotty

	GNOTTY_BOT_PASSWORD - Optional IRC password for the bot.
string, default: None

	GNOTTY_LOGIN_REQUIRED - Django login required for all URLs
(Django only)
boolean, default: False

	GNOTTY_DAEMON - run in daemon mode.
boolean, default: False

	GNOTTY_PID_FILE - path to write PID file to when in daemon
mode.
string, default: [tmp]/gnotty-[http-host]-[http-port].pid

	GNOTTY_LOG_LEVEL - Log level to use. DEBUG will spew out
all IRC data.
string, default: INFO

To be clear: the IRC host and port are for specifying the IRC server
to connect to. The HTTP host and port are what will be used to host
the gevent/WebSocket server.

Django Integration

With the above settings defined in your Django project’s
settings.py module, a few more steps are required. As with most
Django apps, add gnotty to your INSTALLED_APPS setting, and
gnotty.urls to your project’s urls.py module:

settings.py
INSTALLED_APPS = (
 # other apps here
 'gnotty',
)

urls.py
from django.conf.urls.defaults import patterns, include, url
urlpatterns = patterns('',
 # other patterns here
 ('^irc/', include('gnotty.urls')),
)

As you can see we’ve mounted all of the urls Gnotty provides under
the prefix /irc/ - feel free to use whatever suits you here. With
this prefix, the URL on our Django development server
http://127.0.0.1:8000/irc/ will load
the chat interface to the IRC channel, along with a search form for
searching the message archive, and links to browsing the archive by
date.

The final step when integrated with Django is to run the Gnotty
server itself. The Gnotty server is backed by gevent, and will host
the WebSocket bridge to the IRC channel. It will also start up the
IRC bot that will connect to the channel, and log all of the messages
in the channel to the database archive.

Running the Gnotty server when integrated with Django is simply a
matter of running the gnottify Django management command:

$ python manage.py gnottify [options]

Note that each of the configuration options can also be specified as
arguments to the gnottify management command. The names and
formats used in this context are the same as those described next for
the stand-alone web client. Any options provided as command-line
arguments take precendence over those defined in your Django project’s
settings.py module.

The gnottify_runserver command is also included, which will run
both the Gnotty server and Django’s runserver command at once,
which is useful during development.

Stand-Alone Web Client

As mentioned, Gnotty can also be run as a stand-alone web client
without using Django at all. In this mode, only the web interface to
the IRC channel is provided, along with whichever IRC bot class is
configured. Message logging can be configured using standard handlers
for the logging module in Python’s standard library.

Once installed, the command gnottify should be available on your
system, and all of the options described earlier can be provided as
arguments to it:

$ gnottify --help
Usage: gnottify [options]

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -a HOST, --http-host=HOST
 HTTP host address to serve from
 [default: 127.0.0.1]
 -p PORT, --http-port=PORT
 HTTP port to serve from
 [default: 8080]
 -A HOST, --irc-host=HOST
 IRC host address to connect to
 [default: irc.freenode.net]
 -P PORT, --irc-port=PORT
 IRC port to connect to
 [default: 6667]
 -C CHANNEL, --irc-channel=CHANNEL
 IRC channel to join
 [default: #gnotty]
 -K CHANNEL_KEY, --irc-channel-key=CHANNEL_KEY
 Optional key required to access the IRC channel
 -c DOTTED_PYTHON_PATH, --bot-class=DOTTED_PYTHON_PATH
 Dotted Python path to the IRC client bot class to run
 [default: gnotty.bots.LoggingBot]
 -n NICKNAME, --bot-nickname=NICKNAME
 IRC nickname the bot will use
 [default: gnotty]
 -x PASSWORD, --bot-password=PASSWORD
 Optional IRC password for the bot
 [default: None]
 -D, --daemon run in daemon mode
 -k, --kill Shuts down a previously started daemon
 -F FILE_PATH, --pid-file=FILE_PATH
 path to write PID file to when in daemon mode
 -l INFO|DEBUG, --log-level=INFO|DEBUG
 Log level to use. DEBUG will spew out all IRC
 data.
 [default: INFO]
 -f FILE_PATH, --conf-file=FILE_PATH
 path to a Python config file to load options from

Note the final argument in the list, --conf-file. This can be used
to provide the path to a Python config module, that contains each of
the settings described earlier. Any options provided via command-line
arguments will take precedence over any options defined in the Python
configuration module.

Daemon Mode

Gnotty can be configured to run as a background process when the
GNOTTY_DAEMON setting is set to True (the --daemon arg
when running stand-alone). When in daemon mode, Gnotty will write its
process ID to the absolute file path specfified by the
GNOTTY_PID_FILE setting (the --pid-file arg when running
stand-alone). If the PID file path is not configured, Gnotty will use
a file name based on the HTTP host and port, in your operating
system’s location for temporary files.

When run in daemon mode, Gnotty will check for an existing PID file
and if found, will attempt to shut down a previously started server
with the same PID file.

IRC Bots

When running, Gnotty hosts an IRC bot that will connect to the
configured IRC channel. The gnotty.bots.BaseBot bot is run by
default, which implements message logging and support for commands
issued within the IRC channel, and webhooks, which allow the IRC
bot to receive data over HTTP.

You can implement your own IRC bot simply by subclassing
gnotty.bots.BaseBot and defining the Python dotted path to it on
startup, via the GNOTTY_BOT_CLASS setting (the --bot-class arg
when running stand-alone).

The gnotty.bots.BaseBot class is derived from the third-party
irclib package’s irc.client.SimpleIRCClient class (and
translated into a Python new-style class for sanity). The IRC
bot will have all of the same methods and events available as the
SimpleIRCClient class.

These are the built-in IRC bot classes provided by the
gnotty.bots package:

	gnotty.bots.BaseBot - The default bot class that implements
logging and handling for commands and webhooks. Your custom bot
should subclass this.

	gnotty.bots.ChatBot - A bot that demonstrates interacting with
the IRC channel by greeting and responding to other users.
Requires the nltk package to be installed.

	gnotty.bots.commits.CommitMixin - A base bot mixin for
receiving commit information for version control systems via bot
webhooks, and relaying the commits to the IRC channel. Used as the
base for the GitHubBot and BitBucketBot bots.

	gnotty.bots.GitHubBot - CommitMixin subclass for
GitHub [http://github.com]

	gnotty.bots.BitBucketBot - CommitMixin subclass for
Bitbucket [http://bitbucket.org]

	gnotty.bots.CommandBot - A bot that implements a handful
of basic commands that can be issued by users in the channel.

	gnotty.bots.RSSBot - A bot that watches RSS feeds and posts
new items from them to the IRC channel.

	gnotty.bots.Voltron - All of the available bots, merged into
one super bot [http://www.youtube.com/watch?v=tZZv5Z2Iz_s].

Take a look at the source code for the gnotty.bots package. You’ll
see that the different features from all of the available bots are
implemented as mixins, which you can mix and match together when
building your own bot classes.

Bot Events

Gnotty’s IRC bots make use of an event handling system. Event handlers
are implemented as methods on any of the classes used to build a bot.
Each event handler gets wrapped with the decorator
gnotty.bots.events.on, which takes a single positional argument for
the event name and marks the method as being a handler for that event.
The decorator may also accept optional keyword arguments depending on
the type of event. Several types of events are available:

	IRC channel events, as implemented by the irclib package’s
irc.client.SimpleIRCClient class.

	IRC commands, which are custom commands that can be triggered by
users in the IRC channel. Each of these take a command keyword
argument, which defines the command name.

	Timer events, which are handlers that are periodically run at a
defined time interval. Each of these take a seconds keyword
argument, which defines the time interval.

	Webhooks, which are handlers that accept data over HTTP. Each of
take a urlpattern keyword argument which defines a regular
expression to match against the webhook’s URL, similar to Django’s
urlpatterns.

Here’s an example IRC bot that implements all the above event types:

from gnotty.bots import BaseBot, events

class MyBot(BaseBot):

 @events.on("join")
 def my_join_handler(self, connection, event):
 """IRC channel event - someone joined the channel."""
 nickname = self.get_nickname(event)
 self.message_channel("Hello %s" nickname)

 @events.on("timer", seconds=10)
 def my_timer(self):
 """Do something every 10 seconds."""
 msg = "Another 10 seconds has passed, are you annoyed yet?"
 self.message_channel(msg)

 @events.on("command", command="!time")
 def my_time_command(self, connection, event):
 """Write the time to the channel when someone types !time"""
 from datetime import datetime
 return "The date and time is %s" % datetime.now()

 @events.on("webhook", urlpattern="^/webhook/do/something/$")
 def my_webhook_handler(self, environ, url, params):
 """Tell the channel that someone hit the webhook URL."""
 ip = environ["REMOTE_ADDR"]
 self.message_channel("The IP %s hit the URL %s" (ip, url))

Given the above class in an importable Python module named my_bot.py,
Gnotty can be started with the bot using the following arguments:

$ gnottify --http-host=127.0.0.1 --http-port=8000 --bot-class=my_bot.MyBot

Channel Events

As described above, each of the IRC channel events implemented by the
irclib package’s irc.client.SimpleIRCClient class are available
as event handlers for an IRC bot. Consult the irclib docs or source
code for details about each of the IRC channel events that are
implemented, as documenting all of these is beyond the scope of this
document. Here are some of the common events to get you started:

	events.on("welcome"): Bot has connected to the server but not
yet joined the channel.

	events.on("namreply"): Bot receives the initial list of
nicknames in the channel once joined.

	events.on("join"): Someone new joined the channel.

	events.on("quit"): Someone left the channel.

	events.on("pubmsg"): A message was sent to the channel.

Each of the channel events receive a connection and event
argument, which are objects for the connection to the IRC server, and
information about the event that occurred.

Command Events

Event handlers for simple commands can be implemented using the
command event name for the gnotty.bots.events.on decorator.
The decorator then takes a command keyword argument, which is the
command name itself. Command events are then triggered by any public
messages in the channel that contain the command name as the first word
in the message. Each subsequent word in the message after the command
is then passed as a separate argument to the event handler method for
the command. In each command event handler method, the bot can then
perform some task, and return a message back to the channel.

Timer Events

These event handlers are defined using the timer event name for the
gnotty.bots.events.on decorator, and simply run repeatedly at a
given interval. A seconds keyword argument to the decorator defines
the interval in seconds as an integer. Note that the seconds
keyword argument is used to sleep after each time the event handler
is run, in order to implement the interval, so an interval of 30
seconds won’t necessarily run precisely twice per minute, since the
event handler itself will take time to execute, particularly if it
accesses external resources over a network.

Webhook Events

IRC bots run by Gnotty contain the ability to receive data over HTTP
via webhooks. Webhooks are methods defined on the bot class with the
webhook event handler name specified for the
gnotty.bots.events.on decorator. The decorator also requires a
urlpattern keyword argument, which is a regular expression for
matching the webhook URL.

The gevent web server will intercept any URLs prefixed
with the path /webhook/, and pass the request onto the bot which
will match the URL to any of the URL patterns defined by webhook event
handlers on the running bot class. A webhook event handler receives
the following arguments:

	environ - The raw environment dict supplied by the gevent web
server that contains all information about the HTTP request.

	url - The actual URL accessed.

	params - A dictionary containing all of the POST and GET data.

Note that the url and params arguments are simply provided for
extra convenience, as their values (and all other environment
information) are already available via the environ argument.

Message Logging

By default, each IRC message in the channel is logged by the IRC bot
run by Gnotty. Logging occurs using Python’s logging module [http://docs.python.org/library/logging.html], to the logger named
irc.message.

Each log record contains the following attributes, where record is
the log record instance:

	record.server - The IRC server the message occurred on.

	record.channel - The IRC channel the message occurred on.

	record.nickname - The nickname of the user who sent the
message.

	record.msg - The actual message string itself.

	record.join_or_leave - True if the record was for a user
joining or leaving the channel, otherwise False.

Here’s an example of adding an extra logging handler for IRC messages:

from logging import getLogger, StreamHandler

class MyLogHandler(StreamHandler):
 def emit(self, record):
 # Do something cool with the log record.
 print record.msg

getLogger("irc.message").addHandler(MyLogHandler())

JavaScript Client

The web client that Gnotty provides includes all the necessary
JavaScript files for communicating with the WebSocket server, such as
Douglas Crockford’s json2.js, and the socket.io.js library
itself. Also provided is the file gnotty.js which implements a
couple of public functions used by the web interface. The first is the
gnotty JavaScript function, which deals directly with the HTML
structure of the chat template:

// Start up the default UI. This function isn't very
// interesting, since it's bound to the HTML provided
// by Gnotty's chat template.
gnotty({
 httpHost: '127.0.0.1',
 httpPort: '8080',
 ircHost: 'irc.freenode.net',
 ircPort: '6667',
 ircChannel: '#gnotty'
});

The second interface is the IRCClient function. This is of
particular interest if you’d like to create your own chat interface,
as it deals exclusively with communication between the web browser and
the WebSocket server. Here’s an example client that simply writes
events out to the console:

// Prompt the user for a nickname and password,
// and create an IRC client.
var client = new IRCClient({
 httpHost: '127.0.0.1',
 httpPort: '8080',
 ircHost: 'irc.freenode.net',
 ircPort: '6667',
 ircChannel: '#gnotty',
 ircNickname: prompt('Enter a nickname:')
 ircPassword: prompt('Enter a password (optional):')
});

// When the client first joins the IRC channel,
// send a message to the channel to say hello.
client.onJoin = function() {
 console.log('joined the channel');
 client.message('Hello, is it me you\'re looking for?');
};

// When someone joins or leaves the channel, we're given the
// entire user list. It'a an array of objects, each with a
// nickname and color property.
client.onNicknames = function(nicknames) {
 nicknames = $.map(nicknames, function(obj) {
 return obj.nickname;
 }).join(', ');
 console.log('The user list changed, here it is: ' + nicknames);
});

// Whenever a message is received from the channel, it's an
// object with nickname, message and color properties.
client.onMessage = function(data) {
 console.log(data.nickname + ' wrote: ' + data.message);
});

// When we leave, reload the page.
client.onLeave = function() {
 location.reload();
};

// The IRC server rejected the nickname.
client.onInvalid = function() {
 console.log('Invalid nickname, please try again.');
};

As you may have guessed, the server-side settings configured for
Gnotty are passed directly into the gnotty JavaScript function,
which then creates its own IRCClient instance.

You’ll also see the data sent to the onMessage and onNickname
events contain color values that the interface can use for colorizing
nicknames. These are calculated on the server, so that both the chat
interface and message archive produce consistent colors every time
a particular nickname is displayed.

Hosting Private Chat Rooms

Creating a private login-protected chat room for your team members
to collaborate on is a breeze using Gnotty. By setting the
GNOTTY_LOGIN_REQUIRED setting to True, Gnotty will require
each user to have a Django user account which they can authenticate
with. The following steps should get you started:

	Create a Django project with Gnotty installed, using the steps
described above under Django Integration. Take a look at the
example_project directory within Gnotty, which contains a
working Django project with Gnotty configured.

	Install an IRC server such as ngIRCd [http://ngircd.barton.de/].
ngIRCd can be installed on both Linux or OSX with a single command
(this works great for local development on OSX). Be sure to
configure ngIRCd to only allow local connections, so that only
Gnotty can connect to it.

With the above setup, all that is then needed are the following
Gnotty settings configured in your Django project’s settings.py
module:

GNOTTY_IRC_HOST = "127.0.0.1"
GNOTTY_LOGIN_REQUIRED = True
GNOTTY_IRC_CHANNEL = "#mychannel" # This can be anything really.

 Copyright 2015, Stephen McDonald.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	latest 0.2.6 documentation

Index

 Copyright 2015, Stephen McDonald.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

_static/file.png

search.html

 Navigation

 		
 index

 		latest 0.2.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Stephen McDonald.
 Created using Sphinx 1.3.1.

_static/up.png

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/comment-close.png

