
latest
Release 0.2.6

August 19, 2015





Contents

1 Installation 3

2 Configuration 5

3 Django Integration 7

4 Stand-Alone Web Client 9

5 Daemon Mode 11

6 IRC Bots 13

7 Bot Events 15

8 Channel Events 17

9 Command Events 19

10 Timer Events 21

11 Webhook Events 23

12 Message Logging 25

13 JavaScript Client 27

14 Hosting Private Chat Rooms 29

i



ii



latest, Release 0.2.6

Created by Stephen McDonald

Gnotty ties the knot between the web and IRC. It is designed to assist open source projects that host an IRC channel
for collaboration on their project. Gnotty is BSD licensed.

Gnotty is comprised of several parts. Primarily Gnotty provides a modern web client and server for communicating
with an IRC channel via a web browser. The web server uses gevent and WebSockets, which provides the commu-
nication layer between the IRC channel and the web browser. Twitter’s Bootstrap is used to style the web interface,
providing a fully responsive layout, suitable for use with mobile devices. Customisable templates are also provided
for skinning the web interface.

Check out the Gnotty live demo to see the web interface in action.

Secondly, Gnotty provides the ability to run a highly customisable IRC bot. Different classes of bots can be configured
on startup, and bots can perform different services such as message logging and interacting with users in the IRC
channel. Bots also contain webhooks, which allows bots to receive and act on input over HTTP from external services.

Gnotty also provides an optional Django application that archives IRC messages, for browsing and searching via a
web interface. By default the IRC bot uses Python’s logging module to provide configurable logging handlers for IRC
messages. When the Django application is used, a logging handler is added that logs all IRC messages to the Django
project’s database. The Django application then provides all the necessary views and templates for messages to be
searched by keyword, or browsed by date using a calendar interface.

Note that the Django application is entirely optional. Gnotty can be run without using Django at all, as a stand-alone
gevent web server that provides the web interface to an IRC channel, with configurable IRC bots.

Contents 1

http://twitter.com/stephen_mcd
http://www.linfo.org/bsdlicense.html
http://www.gevent.org
http://en.wikipedia.org/wiki/WebSockets
http://twitter.github.com/bootstrap/
http://gnotty.jupo.org


latest, Release 0.2.6

2 Contents



CHAPTER 1

Installation

The easiest way to install Gnotty is directly from PyPi using pip by running the command below:

$ pip install -U gnotty

Otherwise you can obtain Gnotty from the GitHub or Bitbucket repositories, and install it directly from source:

$ python setup.py install

3

http://www.pip-installer.org
https://github.com/stephenmcd/gnotty
https://bitbucket.org/stephenmcd/gnotty


latest, Release 0.2.6

4 Chapter 1. Installation



CHAPTER 2

Configuration

Gnotty is configured via a handful of settings. When integrated with Django, these settings can be defined in your
Django project’s settings.py module. When Gnotty is run as a stand-alone client, these same settings can be
defined via the command-line, or in a separate Python configuration module. See the “Stand-Alone Web Client”
section below for details.

• GNOTTY_HTTP_HOST - HTTP host address to serve from. string, default: 127.0.0.1

• GNOTTY_HTTP_PORT - HTTP port to serve from. integer, default: 8080

• GNOTTY_IRC_HOST - IRC host address to connect to. string, default: irc.freenode.net

• GNOTTY_IRC_PORT - IRC port to connect to. integer, default: 6667

• GNOTTY_IRC_CHANNEL - IRC channel to join. string, default: #gnotty

• GNOTTY_IRC_CHANNEL_KEY - Optional key required to access the IRC channel. string, default: None

• GNOTTY_BOT_CLASS - Dotted Python path to the IRC client bot class to run. string, default:
gnotty.bots.BaseBot

• GNOTTY_BOT_NICKNAME - IRC nickname the logging client will use. string, default: gnotty

• GNOTTY_BOT_PASSWORD - Optional IRC password for the bot. string, default: None

• GNOTTY_LOGIN_REQUIRED - Django login required for all URLs (Django only) boolean, default: False

• GNOTTY_DAEMON - run in daemon mode. boolean, default: False

• GNOTTY_PID_FILE - path to write PID file to when in daemon mode. string, default: [tmp]/gnotty-[http-
host]-[http-port].pid

• GNOTTY_LOG_LEVEL - Log level to use. DEBUG will spew out all IRC data. string, default: INFO

To be clear: the IRC host and port are for specifying the IRC server to connect to. The HTTP host and port are what
will be used to host the gevent/WebSocket server.

5



latest, Release 0.2.6

6 Chapter 2. Configuration



CHAPTER 3

Django Integration

With the above settings defined in your Django project’s settings.py module, a few more steps are required.
As with most Django apps, add gnotty to your INSTALLED_APPS setting, and gnotty.urls to your project’s
urls.py module:

# settings.py
INSTALLED_APPS = (

# other apps here
'gnotty',

)

# urls.py
from django.conf.urls.defaults import patterns, include, url
urlpatterns = patterns('',

# other patterns here
('^irc/', include('gnotty.urls')),

)

As you can see we’ve mounted all of the urls Gnotty provides under the prefix /irc/ - feel free to use whatever suits
you here. With this prefix, the URL on our Django development server http://127.0.0.1:8000/irc/ will load the chat
interface to the IRC channel, along with a search form for searching the message archive, and links to browsing the
archive by date.

The final step when integrated with Django is to run the Gnotty server itself. The Gnotty server is backed by gevent,
and will host the WebSocket bridge to the IRC channel. It will also start up the IRC bot that will connect to the
channel, and log all of the messages in the channel to the database archive.

Running the Gnotty server when integrated with Django is simply a matter of running the gnottify Django man-
agement command:

$ python manage.py gnottify [options]

Note that each of the configuration options can also be specified as arguments to the gnottify management com-
mand. The names and formats used in this context are the same as those described next for the stand-alone web client.
Any options provided as command-line arguments take precendence over those defined in your Django project’s
settings.py module.

The gnottify_runserver command is also included, which will run both the Gnotty server and Django’s
runserver command at once, which is useful during development.

7

http://127.0.0.1:8000/irc/


latest, Release 0.2.6

8 Chapter 3. Django Integration



CHAPTER 4

Stand-Alone Web Client

As mentioned, Gnotty can also be run as a stand-alone web client without using Django at all. In this mode, only the
web interface to the IRC channel is provided, along with whichever IRC bot class is configured. Message logging can
be configured using standard handlers for the logging module in Python’s standard library.

Once installed, the command gnottify should be available on your system, and all of the options described earlier
can be provided as arguments to it:

$ gnottify --help
Usage: gnottify [options]

Options:
--version show program's version number and exit
-h, --help show this help message and exit
-a HOST, --http-host=HOST

HTTP host address to serve from
[default: 127.0.0.1]

-p PORT, --http-port=PORT
HTTP port to serve from
[default: 8080]

-A HOST, --irc-host=HOST
IRC host address to connect to
[default: irc.freenode.net]

-P PORT, --irc-port=PORT
IRC port to connect to
[default: 6667]

-C CHANNEL, --irc-channel=CHANNEL
IRC channel to join
[default: #gnotty]

-K CHANNEL_KEY, --irc-channel-key=CHANNEL_KEY
Optional key required to access the IRC channel

-c DOTTED_PYTHON_PATH, --bot-class=DOTTED_PYTHON_PATH
Dotted Python path to the IRC client bot class to run
[default: gnotty.bots.LoggingBot]

-n NICKNAME, --bot-nickname=NICKNAME
IRC nickname the bot will use
[default: gnotty]

-x PASSWORD, --bot-password=PASSWORD
Optional IRC password for the bot
[default: None]

-D, --daemon run in daemon mode
-k, --kill Shuts down a previously started daemon
-F FILE_PATH, --pid-file=FILE_PATH

path to write PID file to when in daemon mode

9



latest, Release 0.2.6

-l INFO|DEBUG, --log-level=INFO|DEBUG
Log level to use. DEBUG will spew out all IRC
data.
[default: INFO]

-f FILE_PATH, --conf-file=FILE_PATH
path to a Python config file to load options from

Note the final argument in the list, --conf-file. This can be used to provide the path to a Python config module,
that contains each of the settings described earlier. Any options provided via command-line arguments will take
precedence over any options defined in the Python configuration module.

10 Chapter 4. Stand-Alone Web Client



CHAPTER 5

Daemon Mode

Gnotty can be configured to run as a background process when the GNOTTY_DAEMON setting is set to True (the
--daemon arg when running stand-alone). When in daemon mode, Gnotty will write its process ID to the absolute
file path specfified by the GNOTTY_PID_FILE setting (the --pid-file arg when running stand-alone). If the PID
file path is not configured, Gnotty will use a file name based on the HTTP host and port, in your operating system’s
location for temporary files.

When run in daemon mode, Gnotty will check for an existing PID file and if found, will attempt to shut down a
previously started server with the same PID file.

11



latest, Release 0.2.6

12 Chapter 5. Daemon Mode



CHAPTER 6

IRC Bots

When running, Gnotty hosts an IRC bot that will connect to the configured IRC channel. The
gnotty.bots.BaseBot bot is run by default, which implements message logging and support for commands
issued within the IRC channel, and webhooks, which allow the IRC bot to receive data over HTTP.

You can implement your own IRC bot simply by subclassing gnotty.bots.BaseBot and defining the Python
dotted path to it on startup, via the GNOTTY_BOT_CLASS setting (the --bot-class arg when running stand-
alone).

The gnotty.bots.BaseBot class is derived from the third-party irclib package’s
irc.client.SimpleIRCClient class (and translated into a Python new-style class for sanity). The IRC
bot will have all of the same methods and events available as the SimpleIRCClient class.

These are the built-in IRC bot classes provided by the gnotty.bots package:

• gnotty.bots.BaseBot - The default bot class that implements logging and handling for commands and
webhooks. Your custom bot should subclass this.

• gnotty.bots.ChatBot - A bot that demonstrates interacting with the IRC channel by greeting and re-
sponding to other users. Requires the nltk package to be installed.

• gnotty.bots.commits.CommitMixin - A base bot mixin for receiving commit information for version
control systems via bot webhooks, and relaying the commits to the IRC channel. Used as the base for the
GitHubBot and BitBucketBot bots.

• gnotty.bots.GitHubBot - CommitMixin subclass for GitHub

• gnotty.bots.BitBucketBot - CommitMixin subclass for Bitbucket

• gnotty.bots.CommandBot - A bot that implements a handful of basic commands that can be issued by
users in the channel.

• gnotty.bots.RSSBot - A bot that watches RSS feeds and posts new items from them to the IRC channel.

• gnotty.bots.Voltron - All of the available bots, merged into one super bot.

Take a look at the source code for the gnotty.bots package. You’ll see that the different features from all of the
available bots are implemented as mixins, which you can mix and match together when building your own bot classes.

13

http://github.com
http://bitbucket.org
http://www.youtube.com/watch?v=tZZv5Z2Iz_s


latest, Release 0.2.6

14 Chapter 6. IRC Bots



CHAPTER 7

Bot Events

Gnotty’s IRC bots make use of an event handling system. Event handlers are implemented as methods on any of the
classes used to build a bot. Each event handler gets wrapped with the decorator gnotty.bots.events.on, which
takes a single positional argument for the event name and marks the method as being a handler for that event. The
decorator may also accept optional keyword arguments depending on the type of event. Several types of events are
available:

• IRC channel events, as implemented by the irclib package’s irc.client.SimpleIRCClient class.

• IRC commands, which are custom commands that can be triggered by users in the IRC channel. Each of these
take a command keyword argument, which defines the command name.

• Timer events, which are handlers that are periodically run at a defined time interval. Each of these take a
seconds keyword argument, which defines the time interval.

• Webhooks, which are handlers that accept data over HTTP. Each of take a urlpattern keyword argument
which defines a regular expression to match against the webhook’s URL, similar to Django’s urlpatterns.

Here’s an example IRC bot that implements all the above event types:

from gnotty.bots import BaseBot, events

class MyBot(BaseBot):

@events.on("join")
def my_join_handler(self, connection, event):

"""IRC channel event - someone joined the channel."""
nickname = self.get_nickname(event)
self.message_channel("Hello %s" nickname)

@events.on("timer", seconds=10)
def my_timer(self):

"""Do something every 10 seconds."""
msg = "Another 10 seconds has passed, are you annoyed yet?"
self.message_channel(msg)

@events.on("command", command="!time")
def my_time_command(self, connection, event):

"""Write the time to the channel when someone types !time"""
from datetime import datetime
return "The date and time is %s" % datetime.now()

@events.on("webhook", urlpattern="^/webhook/do/something/$")
def my_webhook_handler(self, environ, url, params):

"""Tell the channel that someone hit the webhook URL."""

15



latest, Release 0.2.6

ip = environ["REMOTE_ADDR"]
self.message_channel("The IP %s hit the URL %s" (ip, url))

Given the above class in an importable Python module named my_bot.py, Gnotty can be started with the bot using
the following arguments:

$ gnottify --http-host=127.0.0.1 --http-port=8000 --bot-class=my_bot.MyBot

16 Chapter 7. Bot Events



CHAPTER 8

Channel Events

As described above, each of the IRC channel events implemented by the irclib package’s
irc.client.SimpleIRCClient class are available as event handlers for an IRC bot. Consult the irclib
docs or source code for details about each of the IRC channel events that are implemented, as documenting all of
these is beyond the scope of this document. Here are some of the common events to get you started:

• events.on("welcome"): Bot has connected to the server but not yet joined the channel.

• events.on("namreply"): Bot receives the initial list of nicknames in the channel once joined.

• events.on("join"): Someone new joined the channel.

• events.on("quit"): Someone left the channel.

• events.on("pubmsg"): A message was sent to the channel.

Each of the channel events receive a connection and event argument, which are objects for the connection to the
IRC server, and information about the event that occurred.

17



latest, Release 0.2.6

18 Chapter 8. Channel Events



CHAPTER 9

Command Events

Event handlers for simple commands can be implemented using the command event name for the
gnotty.bots.events.on decorator. The decorator then takes a command keyword argument, which is the
command name itself. Command events are then triggered by any public messages in the channel that contain the
command name as the first word in the message. Each subsequent word in the message after the command is then
passed as a separate argument to the event handler method for the command. In each command event handler method,
the bot can then perform some task, and return a message back to the channel.

19



latest, Release 0.2.6

20 Chapter 9. Command Events



CHAPTER 10

Timer Events

These event handlers are defined using the timer event name for the gnotty.bots.events.on decorator, and
simply run repeatedly at a given interval. A seconds keyword argument to the decorator defines the interval in
seconds as an integer. Note that the seconds keyword argument is used to sleep after each time the event handler
is run, in order to implement the interval, so an interval of 30 seconds won’t necessarily run precisely twice per minute,
since the event handler itself will take time to execute, particularly if it accesses external resources over a network.

21



latest, Release 0.2.6

22 Chapter 10. Timer Events



CHAPTER 11

Webhook Events

IRC bots run by Gnotty contain the ability to receive data over HTTP via webhooks. Webhooks are methods defined on
the bot class with the webhook event handler name specified for the gnotty.bots.events.on decorator. The
decorator also requires a urlpattern keyword argument, which is a regular expression for matching the webhook
URL.

The gevent web server will intercept any URLs prefixed with the path /webhook/, and pass the request onto the bot
which will match the URL to any of the URL patterns defined by webhook event handlers on the running bot class. A
webhook event handler receives the following arguments:

• environ - The raw environment dict supplied by the gevent web server that contains all information about the
HTTP request.

• url - The actual URL accessed.

• params - A dictionary containing all of the POST and GET data.

Note that the url and params arguments are simply provided for extra convenience, as their values (and all other
environment information) are already available via the environ argument.

23



latest, Release 0.2.6

24 Chapter 11. Webhook Events



CHAPTER 12

Message Logging

By default, each IRC message in the channel is logged by the IRC bot run by Gnotty. Logging occurs using Python’s
logging module, to the logger named irc.message.

Each log record contains the following attributes, where record is the log record instance:

• record.server - The IRC server the message occurred on.

• record.channel - The IRC channel the message occurred on.

• record.nickname - The nickname of the user who sent the message.

• record.msg - The actual message string itself.

• record.join_or_leave - True if the record was for a user joining or leaving the channel, otherwise
False.

Here’s an example of adding an extra logging handler for IRC messages:

from logging import getLogger, StreamHandler

class MyLogHandler(StreamHandler):
def emit(self, record):

# Do something cool with the log record.
print record.msg

getLogger("irc.message").addHandler(MyLogHandler())

25

http://docs.python.org/library/logging.html
http://docs.python.org/library/logging.html


latest, Release 0.2.6

26 Chapter 12. Message Logging



CHAPTER 13

JavaScript Client

The web client that Gnotty provides includes all the necessary JavaScript files for communicating with the WebSocket
server, such as Douglas Crockford’s json2.js, and the socket.io.js library itself. Also provided is the file
gnotty.js which implements a couple of public functions used by the web interface. The first is the gnotty
JavaScript function, which deals directly with the HTML structure of the chat template:

// Start up the default UI. This function isn't very
// interesting, since it's bound to the HTML provided
// by Gnotty's chat template.
gnotty({

httpHost: '127.0.0.1',
httpPort: '8080',
ircHost: 'irc.freenode.net',
ircPort: '6667',
ircChannel: '#gnotty'

});

The second interface is the IRCClient function. This is of particular interest if you’d like to create your own chat
interface, as it deals exclusively with communication between the web browser and the WebSocket server. Here’s an
example client that simply writes events out to the console:

// Prompt the user for a nickname and password,
// and create an IRC client.
var client = new IRCClient({

httpHost: '127.0.0.1',
httpPort: '8080',
ircHost: 'irc.freenode.net',
ircPort: '6667',
ircChannel: '#gnotty',
ircNickname: prompt('Enter a nickname:')
ircPassword: prompt('Enter a password (optional):')

});

// When the client first joins the IRC channel,
// send a message to the channel to say hello.
client.onJoin = function() {

console.log('joined the channel');
client.message('Hello, is it me you\'re looking for?');

};

// When someone joins or leaves the channel, we're given the
// entire user list. It'a an array of objects, each with a
// nickname and color property.
client.onNicknames = function(nicknames) {

27



latest, Release 0.2.6

nicknames = $.map(nicknames, function(obj) {
return obj.nickname;

}).join(', ');
console.log('The user list changed, here it is: ' + nicknames);

});

// Whenever a message is received from the channel, it's an
// object with nickname, message and color properties.
client.onMessage = function(data) {

console.log(data.nickname + ' wrote: ' + data.message);
});

// When we leave, reload the page.
client.onLeave = function() {

location.reload();
};

// The IRC server rejected the nickname.
client.onInvalid = function() {

console.log('Invalid nickname, please try again.');
};

As you may have guessed, the server-side settings configured for Gnotty are passed directly into the gnotty
JavaScript function, which then creates its own IRCClient instance.

You’ll also see the data sent to the onMessage and onNickname events contain color values that the interface can
use for colorizing nicknames. These are calculated on the server, so that both the chat interface and message archive
produce consistent colors every time a particular nickname is displayed.

28 Chapter 13. JavaScript Client



CHAPTER 14

Hosting Private Chat Rooms

Creating a private login-protected chat room for your team members to collaborate on is a breeze using Gnotty.
By setting the GNOTTY_LOGIN_REQUIRED setting to True, Gnotty will require each user to have a Django user
account which they can authenticate with. The following steps should get you started:

• Create a Django project with Gnotty installed, using the steps described above under Django Integration. Take
a look at the example_project directory within Gnotty, which contains a working Django project with
Gnotty configured.

• Install an IRC server such as ngIRCd. ngIRCd can be installed on both Linux or OSX with a single command
(this works great for local development on OSX). Be sure to configure ngIRCd to only allow local connections,
so that only Gnotty can connect to it.

With the above setup, all that is then needed are the following Gnotty settings configured in your Django project’s
settings.py module:

GNOTTY_IRC_HOST = "127.0.0.1"
GNOTTY_LOGIN_REQUIRED = True
GNOTTY_IRC_CHANNEL = "#mychannel" # This can be anything really.

29

http://ngircd.barton.de/

	Installation
	Configuration
	Django Integration
	Stand-Alone Web Client
	Daemon Mode
	IRC Bots
	Bot Events
	Channel Events
	Command Events
	Timer Events
	Webhook Events
	Message Logging
	JavaScript Client
	Hosting Private Chat Rooms

